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1 Introduction to Remote Sensing 
Remote sensing has been variously defined, but basically is the science that describes 

the collection of physical information, interpretation and extraction of information 

acquired over an object or area of interest without having physical contact, by the use 

of remote sensing instruments. The term information refers to a wide range of 

observable quantities, such as reflected solar radiation across the electromagnetic 

spectrum and emitted thermal radiation measured from handheld, unmanned aerial 

vehicle (UAV), airborne or spaceborne imaging sensors and received back-scattered 

microwave radiation equipment. Availability and effective exploitation of such data has 

facilitated advances in many applied fields (CHAMBELL, 1996; USTIN, 2004) 

The availability and capacity of remote sensing data is comprehensive and huge, 

therefore the application of remote sensing data to identify and monitor land surfaces 

and environmental conditions has expanded enormously and remotely sensed data 

are an essential tool in natural resource management. Climatic changes, 

desertification processes, forest fires, glaciers melting, water pollution, land cover and 

vegetation status can be observed thanks to remote sensors onboard of aircraft or 

satellites orbiting around the earth. Remote sensors onboard of aircraft and satellites 

allow for a synoptic view of the earth surface at different wavelengths of the 

electromagnetic radiation at the same time (multi-spectral, -frequency), with (high-) 

frequent time interval and scale (multi-resolution). 

Sensors can be divided into two groups: Passive sensors depend on an external 

source of energy, usually the sun. Sun radiation is reflected and emitted from the earth 

surface and collected by a wide variety of optical sensors. Active sensors have their 

own source of energy. These sensors send out a signal and measure the amount 

reflected back, and do not depend upon varying illumination conditions (PRASAD ET AL., 

2011) (see Fig. 1). 
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Figure 1: Passive and active sensors (Source: BGR). 

 

1.1 Fundamentals of Optical Remote Sensing 
Optical remote sensing involves acquisition and analysis of optical data, based on solar 

illumination and the detection of electromagnetic radiation reflected from targets on the 

ground. Optical Remote Sensing deals with those part of electromagnetic spectrum 

characterized by the wavelengths from the visible (from 0.4 µm) to the near infrared 

(NIR) and short wave infrared (SWIR) up to thermal infrared (TIR, 15 µm), collecting 

radiation reflected and emitted from the observed surfaces (see Fig. 1). 

Optical remote sensing is a passive technique for earth observation, which is exposed 

to a strong interaction of the electromagnetic radiation within the atmosphere at its 

operating frequencies and to the presence of clouds. Both factors constitute important 

limitations on the potential observation of the earth’s surface.  

Analysis is based on the spectral differences of materials, as materials reflect and 

absorb differently at different wavelengths, resulting in a specific and unique “spectral 

footprint”. Thus, the targets can be differentiated by their spectral reflectance 

signatures in the remotely sensed images (SABINS, 1996; RENCZ, 1999). 

Optical remote sensing systems are classified depending mainly on the number of 

spectral bands used in the imaging process. Advances in imaging hardware enabled 

availability of high spatial, spectral and temporal resolution (PRASAD ET AL., 2011). 
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A wide range of applications is still based on multispectral imaging systems e.g. 

Sentinel-2, Landsat-OLI, even so hyperspectral sensors show rapid development on 

all platforms from UAV to spaceborne carriers. 

 

1.2 Fundamentals of RADAR Remote Sensing 
RADAR is an acronym for RAdio Detection And Ranging and describes an object-

detection and active imaging system using radio waves (see Fig. 1). The 

electromagnetic waves used for imaging radars have wavelengths in the order of 

several centimeters up to roughly one meter. Since earth’s atmosphere has a high 

penetrability in this part of the electromagnetic spectrum, radar-imaging systems are 

highly independent from weather conditions in the atmosphere. 

The accuracy of an imaging radar is defined by two measures: the resolution along the 

line-of-sight (range resolution) and the resolution along the flight path of the carrier 

platform (azimuth resolution). The azimuth resolution depends on the antenna 

aperture: the larger the distance to the area of interest, the larger the antenna must be. 

For space-borne missions this leads to unrealistic demands on the size of the antenna 

mounted on the satellite (WOODHOUSE, 2006). To overcome this obstacle, Synthetic 

Aperture Radar (SAR) exploits the Doppler Effect to synthesize a larger virtual antenna 

through the combination of several return signals (echoes).  

The signal received at the sensor has a frequency variation induced as a result of the 

platform motion. This effect is known as Doppler shift, a well-known phenomenon in 

physics. Since the resolution depends on the time, a particular object on the ground is 

illuminated by the radar beam, making use of the Doppler shift to combine several 

backscattered echoes effectively results in increasing the duration of irradiation. As 

this is in effect equal to increasing the antenna aperture size of which the illumination 

time is a direct function, the term Synthetic Aperture Radar (SAR) is used to describe 

such an imaging system (RICHARDS, 2009). 

SAR sensors are usually mounted on an airborne or space-borne platform and have a 

side-looking imaging geometry. While the carrier platform moves forward, the SAR 

system continuously emits and receives electromagnetic pulses. The emitted radiation 

interacts with objects on the surface that will then backscatter a portion of the signal to 

the sensor. How big that portion will be, depends on the physical and electrical 

properties of the objects (FORNANO & PASCAZIO, 2014). At the sensor, both amplitude 

and phase of the backscattered signal are received (MOREIRA ET AL., 2013). While the 
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amplitude is related to the object properties (material, roughness, dielectric properties, 

etc.), the phase is a function of the sensor-target distance. 

Synthetic aperture radar (SAR) remote sensing is used today in a wide range of 

applications and offers a number of complementary and additional capabilities with 

regard to optical remote sensing. For instance, it can be used to acquire images at 

night and almost weather independent, to determine soil moisture, biomass or to 

measure terrain deformations. The ranging capabilities of SAR are used in various 

ways. Radar interferometry (InSAR) is one such application and allows the estimation 

of ground deformation and / or topography from (at least) two SAR acquisitions making 

use of the phase information contained in both images. Multi-temporal InSAR 

approaches such as Persistent Scatterer Interferometry (PSI) allow the precise 

estimation (with millimeter accuracy) of surface deformation for specific point targets 

over long time periods. 
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2 Products 

2.1  Land-use Map 
The fast growing population and the trend to move to urban areas leads to a dynamic 

change in land use. New urban areas are developed by filling agricultural land with 

river sand to make the building ground more resilient to flooding (see Fig. 2). 

The overall goal of this analysis is the comprehensive mapping of the 2019 land-use 

in Kushtia to derive information on existing and newly established filled areas. The 

resulting maps will be used in further analyses together with a geomorphological map 

as a basis for the regionalization of drilling points. Freely available optical satellite data 

and a supervised classification method allow for the mapping of the land-use. 

Land-use maps using the classes “Water”, “Bare Soil”, “Urban”, “Rural Settlements” 

and “Agriculture” are provided for September 2019. An overview map shows the land-

use of the study area as well as the surrounding rural areas (Fig. A2). A map, focusing 

on the study area presents the land-use within the city of Kushtia (Fig. A3).  

Figure 2: Filling of agricultural land with river sand in Faridpur. Photo: L. Wimmer, 11/2019. 
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The main focus of this analysis is the distribution of filled and non-filled areas from the 

land-use map by reclassification of the five above-mentioned classes. A third map 

presents these areas within the study area of Kushtia (Fig. A4). 

To process the land-use maps, a supervised classification method based on 

interactively selected training areas is used. These areas are interactively chosen from 

the original satellite image and represent the spectral properties of a certain land-use 

class. The supervised classification classifies the satellite image by comparing all the 

image values with the selected training areas. 

 

Data 

The land use classification is based on a cloud-free image from the Copernicus 

Sentinel-2 mission for the period of the Bangladesh dry season between October and 

April and the transition times before and after it. To be able to receive results on the 

most recent land-use and in order to map water areas comprehensively, a satellite 

image from the early dry season 2019/2020 is required. Different atmospheric 

conditions during the sensing times of the images can result in different image features 

of the same ground objects. Therefore, atmospheric corrected images are mandatory, 

to allow comparison with future land use maps based on Sentinel-2 data. An 

atmospheric correction eliminates the atmospheric effects in an image and results in a 

surface reflectance image that characterizes the spectral surface properties. The 

atmospherically corrected image, showing the overview area cloud-free, from the 22. 

September 2019 is used for further processing (see Annexure C: Data). 

As input for the land use mapping, all bands with the resolution of 10m and 20m of the 

image are used (Tab. 1). This selection enables the classification method to accurately 

characterize the land-use classes by using all available spectral properties of the 

ground objects.  
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Table 1: Overview of the Copernicus Sentinel-2 satellite image used for the classification. Blue color represents 

the spectral band subset used in the analysis. 

Sensing Date Bands Wavelengths Spatial Resolution 

22.09.2019 

1 Coastal Aerosol 417nm – 471nm 60m 

2 Blue 399nm – 595nm 10m 

3 Green 515nm – 605 nm 10m 

4 Red 627nm – 703nm 10m 

5 

Near Infrared 

685nm – 723nm 20m 

6 722nm – 758nm 20m 

7 754nm – 810nm 20m 

8 690nm – 980nm 20m 

8A 832nm – 898nm 20m 

9 Water Vapor 919nm – 971nm 60m 

10 Cirrus 1299nm – 1449nm 60m 

11 
Shortwave Infrared 

1471nm – 1757nm 20m 

12 1960nm – 2444nm 20m 

 

Methods 

The workflow of the classification is visualized in Fig. 3. 

 

Preprocessing 

To prepare the image for the classification, a spatial subset and a spectral subset are 

created. The spatial subset shows an overview of the study area of Kushtia as well as 

the surrounding rural areas (Fig. A1). The spectral subset includes the above-

mentioned (Tab. 1) Sentinel-2 bands (Band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12). Subsequent, 

all image bands with 20m resolution are resampled to a 10m spatial resolution to keep 

the information of the higher resolution 10m bands.  

At two locations, the image is showing smoke (Fig. A1). To avoid misclassifications, 

these areas are masked from the satellite image for further processing (Fig. A5).  

 

Classes and Training Areas 

The purpose of the land-use classification is to derive information on urban settlement 

structures. Accordingly, the two classes “Urban" and "Rural Settlements" are used for 

the description of these structures. “Agriculture" and "Bare Soil" are chosen to describe 

the undeveloped areas in general. Water areas are represented by the class "Water".  
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Figure 3: Workflows of the Land-use classification. 

 

 

 

 

 

 



9 
 

These classes are based on the CORINE Landcover (CLC) program (EUROPEAN 

ENVIRONMENT AGENCY, 2019). CORINE Landcover is a program of the European 

Commission to standardize the most important forms of land cover for environmental 

policy development. The standardized classes are based on biophysical 

characteristics of the Earth’s surface (EUROPEAN ENVIRONMENT AGENCY, 2017).  

“Water” includes all open water bodies, such as river, canals, channels, lakes and 

ponds. “Bare Soil” includes all surfaces of bright bare soil, such as riverbanks, 

pointbars and filled areas for urban development. “Urban” includes residential and 

industrial buildings without tree cover. Furthermore, it includes streets, railway lines 

and sealed surfaces. “Rural Settlements” include the city suburbs and rural villages 

that have tree coverage. “Agriculture” are all areas of farmland, such as cropland (rice, 

vegetables, etc.) or pasture land (for cattle, goats, etc.).  

Training areas for all classes are selected from the Sentinel-2 dataset (see Tab. 2). To 

receive an acceptable classification result, the training areas must be both 

representative and complete for their land-use classes (LILLESAND ET AL., 2015). 

All land-use classes have non-uniform spectral characteristics in common. For 

example, in the “Urban” class, the spectral characteristics of tin shacks and high-rise 

buildings differ. The “Agriculture” class includes spectral characteristics of different 

crops and in the “Water” class, different water qualities also differ spectrally. Different 

soil types in the “Bare Soil” class also have different spectral characteristics. The “Rural 

Settlements” class contains areas with different tree species, which result in different 

spectral characteristics. 

The training areas of the land-use classes are required to represent these different 

spectral characteristics. The number of training areas therefore depends on the 

spectral variability within a land-use class (see Tab. 2). 

The training areas are dispersed throughout the Sentinel-2 dataset to increase the 

representation of all variations in the land-use classes (LILLESAND ET AL., 2015).  
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Table 2: Overview of the number of training areas per class. 

Class Number of Training Areas 

Agriculture 25 

Bare Soil 15 

Rural Settlements 10 

Urban 15 

Water 20 

 

To show the spectral variabilities of the individual classes, the spectral profiles of the 

classes are shown in Fig. 4. Each curve represents the averaged spectral signatures 

of all training areas per class, based on the Sentinel-2 data set of 22.09.2019. Fig. 4 

shows the spectral separability of the classes over the whole band range (see Tab. 1). 

 

 

Figure 4: Mean signatures of the merged training areas. 

 

The spectral curves of the classes “Agriculture” and “Rural Settlements” have similar 

spectral signatures. The reason for these similarities is that the class “Rural 

Settlements” is dominated by tree coverage and therefore represents a strong 

vegetation signal. Both classes show vegetation-typical characteristics, such as the 

"red edge" (a significant increase of reflection in the near infrared bands 5 and 6 
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compared to the visible bands 2 to 4). The main difference is a higher reflectance of 

the class agriculture in band 2 to 4. 

The spectral signature of “Water” shows higher reflection values around band 7 leading 

to the interpretation that the water class/signature contains impurities, such as 

sediments. Pure water would have zero reflectance in these longer wavelengths.  

The spectral curve of the class “Urban” shows a relatively continuous increase. The 

spectral curve can be compared to the signature of “Bare Soil”, as both signatures 

show corresponding characteristics. The main difference between both spectral 

signatures is the intensity of reflectance. 

 

Classification 

To perform the supervised classification, the Maximum Likelihood classifier is selected. 

This method assumes a Gaussian (normal) distribution of the statistics of each class 

in each spectral band, and the assumption of a Gaussian distribution can be seen as 

generally reasonable for common spectral response distributions. 

The probability of a pixel belonging to one of the above defined classes is calculated 

based on the mean vector of a class and the covariance matrix. According to the 

highest probability value, a pixel is assigned to a certain class (LILLESAND ET AL., 2015). 

 

Post-Processing 

The same object feature may be classified in different classes due to spectral 

variabilities. The classification result might show single isolated pixels of one class in 

the area of  another class (LILLESAND ET AL., 2015). 

To remove the single isolated pixels in the classification image, a sieve filter is applied. 

This filter replaces all pixel patches that are smaller than four pixels by the value of the 

surrounding neighbor class. A pixel patch is a group of pixels that share their sides or 

have connected angles. The final classification result is shown in Fig. A2 and A3. 

 

Calculation of filled and non-filled areas 

Based on the knowledge of the GSB colleagues and the experience gained during 

fieldwork, all urbanized areas and settlement structures in Kushtia are developed on 

filled areas. Therefore, those areas are considered as filled areas, the classes “Urban” 

and “Rural Settlements” are reclassified to “Filled” and the classes “Water”, “Bare Soil” 

and “Agriculture” are reclassified to “Non-filled” (see Fig. A4). 
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Accuracy Assessment 

During the accuracy assessment, randomly distributed test samples are used to 

compare the classification result with an independent high-resolution reference 

dataset. As a high-resolution reference dataset, free accessible Google Earth satellite 

images are used.  Thus, details for a more precise interpretation of the actual land use 

become visible and the classification result can be assessed visually without having 

the necessity to collect ground truth information during fieldwork. 

LILLESAND ET AL. (2015) recommends using at least 50 test samples per class for 

accuracy assessment. Following this recommendation, 250 test samples are randomly 

distributed in the image, using 50 samples for each class (Tab. 3).  

 
Table 3: Accuracy Assessment, Sentinel-2 dataset (22.09.2019). 

Sentinel-2, 
22.09.2019 

Reference  

Agriculture Bare Soil 
Rural 

Settlements 
Urban Water 

Row 
Total 

User’s 
Accuracy 

(%) 

C
la

s
s
if
ic

a
ti
o

n
 

Agriculture 47 0 3 0 0 50 94.0 

Bare Soil 16 31 1 1 1 50 62.0 

Rural 
Settlements 

14 1 34 1 0 50 68.0 

Urban 7 4 6 31 2 50 62.0 

Water 0 0 2 0 48 50 96.0 

 
Column Total 84 36 46 33 51 250  

Producer’s 
Accuracy (%) 

55.95 86.11 73.91 93.93 94.11   

Cohen’s Kappa 
per Class 

0.89 0.61 0.63 0.58 0.94   

Overall 
Accuracy (%) 

76.4       

Overall Kappa 0.8       

 
Since the images from Google Earth represent a compilation of different points in time, 

the Sentinel-2 dataset is used as an auxiliary dataset. Both data sets were acquired at 

different stages of flooding. Therefore, the visual impression of the Sentinel-2 dataset 

is given priority over the data from Google Earth when assigning water areas. Based 

on these datasets, land-use classes are interactively assigned to the test sample 

classes. Following this, the test areas are compared with the classification results to 

receive the accuracy measures (Tab. 3).  
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The overall accuracy of the classification is 76.4 %. The Kappa coefficient, a measure 

for the agreement between classification result and reference shows a good result of 

0.8. The User's Accuracy shows how reliable the classified pixels represent actual land 

use, while Producer's Accuracy shows how well an object class has been correctly 

classified. In addition, the Kappa coefficients of each class are displayed in order to 

individually evaluate the reliability of the classification result. 

 

The “Water” class is most reliably classified with a User’s Accuracy of 96.0 %. A 

similarly high accuracy is achieved in the “Agriculture” class (User’s Accuracy of 94.0 

%). This is reflected in the high Kappa coefficients of 0.94 for “Water” and 0.89 for 

“Agriculture”.  

The “Rural Settlements” (68.0 %), “Urban” (62.0 %) and “Bare Soil” (62.0 %) classes 

also share a common, but lower range, in the User’s Accuracy. This is also visible in 

the Kappa coefficients, so that the agreement between the classification result and the 

reference data is 0.61 (“Bare Soil”), 0.63 (“Rural Settlements”) and 0.58 (“Urban”). The 

reason for these overall lower accuracy values may be related to different 

circumstances. For example, the spectral signature of the “Rural Settlements” class is 

very similar to the spectral signature of the “Agriculture” class and differs only in the 

first four bands by a lower intensity (Fig. 4). “Rural Settlements”, that could have similar 

spectral characteristics like vegetable plantations, may therefore be classified 

incorrectly. 

Tab. 3 also shows that a notable number of “Bare Soil” samples were classified as 

“Agriculture”. This may be related to the different vegetation stages of the crops. Fields 

that are shortly before harvest have a similar signature as “Bare Soil” and may 

therefore be misclassified.  

The relatively low accuracy value of the “Urban” class may be related to a mixed-pixel 

problem in the Sentinel-2 dataset. Individual residential or industrial buildings may be 

smaller than the resolution of the Sentinel-2 dataset (10m x 10m). As a result, a pixel 

represents a mixture of urban buildings and other surfaces (e.g. soil or trees). This 

mixture can lead to misclassification. Due to the high-resolution reference image, it is 

possible to interactively determine the main content of a pixel (e.g. urban buildings) 

and to assign it to the test sample classes. The mixed pixels of the Sentinel-2 dataset 

can thus lead to a lower accuracy in the "Urban" class. 
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The overall visual impression of the classification result (Fig. A2), as well as the overall 

accuracy and the overall Kappa coefficient (Tab. 3) show a good result and 

representation of the actual land-use. 

 

2.2 River Shifting Change Detection Map 
Rivers in Bangladesh are highly dynamic and underlie severe changes in location and 

intensity during a few years. During a few decades, rivers may change whole 

landscapes. The overall goal of this analysis is to provide information on the changes 

of the Padma river system course and the direction of shifting. The river system 

includes the water bodies and pointbars. A regional map covers these changes from 

the area of Bagha in the northwest to the area of Kumarkhali in the southeast (Fig. A6). 

Local changes inside this area are presented in a map showing only the city of Kushtia 

(Fig. A17). The focus is the mapping of recent active areas of the river system and 

passive areas which were active in the past decades but are inactive recently. River 

course maps are provided for six time slices (1973, 1980, 1990, 2000, 2010 and 2019) 

(Fig. A9-A14). The change detection map shows data of the time slices with the highest 

difference in river system areas (1973, 2000 and 2019) (Fig. A9-A14, A16). A map 

focusing on the Kushtia study area shows active and passive river system areas using 

all six time slices (Fig. A17). 

 

Data 

To carry out the analysis, cloud-free optical images from Landsat Multispectral 

Scanner System MSS, Landsat Thematic Mapper TM and Copernicus Sentinel-2 

missions are used. These are available during the period of the Bangladesh dry season 

between October and April, and images from January and February are used in the 

analysis. A comparison between images of different years is only possible when the 

target features (e.g. water) can be identified in all the images by similar response 

signal. This can be ensured by using images of the same month in every year of the 

analysis.  

Starting 1973, one image per decade is used (1973, 1980, 1990, 2000, 2010 and 

2019).  

To enable comparability between the final river shifting products, only bands from the 

Landsat and Copernicus Sensors with similar wavelengths positions have been 

chosen for processing (see Tab. 4 and Annexure C: Data). 
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Table 4: Overview of the satellite images and their bands used for the analysis (EUROPEAN SPACE AGENCY 

2017; UNITED STATES GEOLOGICAL SURVEY n.d.). 

Mission Sensing Date 
Bands (B), Spatial Resolution/ Wavelengths  

Green NIR  

Landsat MSS 
21.02.1973 B4, 60m 

0.5-0.6 µm 
 

B7, 60m 
0.8-1.1 µm 
 21.02.1980 

Landsat TM 

13.01.1990 

B2, 30m 
0.52-0.6 µm 

B4, 30m 
0.76-0.90 µm 

11.02.2000 

06.02.2010 

Sentinel-2 24.02.2019 
B3, 10m 
0.538-0.583 µm 

B8, 20m 
0.76-0.97 µm 

 

Methods 

The workflow of the analysis is visualized in Fig. 5. 

 

Atmospheric Correction 

Different atmospheric conditions during the sensing times of the images can result in 

a different image feature of the physically same ground objects. Therefore, to enable 

the comparison between all the images, an atmospheric correction is mandatory. An 

atmospheric correction eliminates the atmospheric effects in an image and results in a 

surface reflectance image that characterizes the surface properties. The Sentinel-2 

image is atmospherically corrected by using the free available European Space 

Agency (ESA) Sen2Cor processor with three parameter changes from the default 

settings (see Tab. 5) (ESA, 2019).  

The Sen2Cor algorithm is a correction method based on physical principals. Physical-

based algorithms use radiative transfer methods, which are simplified models of the 

radiation pathway from source to sensor, to model atmospheric scattering and 

absorption (LILLESAND ET AL., 2015). Auxiliary data such as water vapor data, 

atmospheric pressure or a digital elevation model are added to receive more precise 

information for the correction. The effects in the atmosphere are quantified by the 

model and used to calculate the surface reflectance values. 
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Landsat MSS; Landsat TM; Sentinel-2 

GREEN, NIR 

Atmospheric Correction 

Landsat MSS: DOS1; Landsat TM: Level-2; Sentinel-2: sen2cor 

NDWI 
(MCFEETERS, 1996) 

Threshold setting 

Clipping river system and adjacent areas  

Vectorization 

to eliminate water bodies without connection to the main river system 

Rasterization 

with charecteristic values for change detection 

Change 
Detection Map 

Active/passive 

river areas Map 

Figure 5: Workflows of the River Shifting Change Detection analysis. 
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Table 5: Overview of the parameters and setting changes for the atmospheric correction of Sentinel-2 data. 

Parameter Setting Description 

Mid_Lat AUTO 

Selection of atmospheric profile. If set to AUTO the 
processor will select WINTER or SUMMER based on 
acquisition date and geographic location. 
(MUELLER-WILM ET AL., 2018, p. 25) 

Ozone 0 
Ozone content: If option 0 is chosen it will be set by using 
the metadata and the Lookup-Tables. 
(MUELLER-WILM ET AL., 2018, p. 25) 

DEM 
directory 

<download directory> 
Providing a directory activates the use of SRTM DEMs for 
topographic correction. (MUELLER-WILM ET AL., 2018, p. 33) 

 

Landsat TM images are already atmospherically corrected available for download. The 

surface reflectance “products are generated by a specialized software called Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS)” (LEDAPS PRODUCT 

GUIDE, 2020). Similar to Sen2Cor, LEDAPS is also a physical-based algorithm that fits 

a radiative transfer model and includes auxiliary data to receive the atmospherically 

corrected surface reflectance product.  

The Landsat MSS image is corrected by using the DOS1 (Dark Objects Subtraction) 

method. CHAVEZ (1996) describes that the methods “[…] basic assumption is that 

within the image some pixels are in complete shadow and their radiances [if above 

zero] received at the satellite are due to atmospheric scattering (path radiance). This 

assumption is combined with the fact that very few targets on the Earth’s surface are 

absolute black, so an assumed one-percent minimum reflectance is better than zero 

percent.” (CHAVEZ, 1996). The calculated radiance-value based on this assumption is 

used for the correction of the whole Landsat MSS image (image –based correction).  

It is important to mention that the accuracy of an image-based correction technique is 

lower than a physically based correction (e.g. as applied for Sentinel-2) (CONGEDO, 

2016). Nevertheless, CONGEDO (2016) states that image-based corrections “are very 

useful when no atmospheric measurements are available as they can improve the 

estimation of land surface reflectance” (CONGEDO, 2016). 

 

Calculation of Normalized Difference Water Index (NDWI) 

Using the respective bands of the images (Tab. 4), the NDWI is calculated (see Fig. 

A7). The Normalized Difference Water Index (NDWI) (MCFEETERS, 1996) uses the 

green and near-infrared bands to delineate open-water features. Water surfaces show 

high reflections in the green and low reflections in the near-infrared wavelength region 

(see Fig. 5). 
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These differences are used to calculate an index that enhances the presence of open 

water features and suppresses the presence of soil and vegetation (MCFEETERS, 

1996). The Waterindex is calculated as follows, using the respective bands of the 

satellite image: 

 

𝑁𝐷𝑊𝐼 =
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

 

The generated index map contains values in the range of -1 to +1 (see Fig. A7), while 

excluding zero. Positive values are interpreted as water features. Soil and vegetation 

features have negative values (MCFEETERS, 1996). 

 

Processing steps 

At first, a threshold value is applied to discriminate between values that belong to the 

river system (water-bodies and pointbars) and all other values. This threshold value is 

defined manually by inspecting the pixels of the different NDWI images (see Tab. 6). 

 

 

 

 

Green 

Bands 

NIR Bands 

Figure 6: Reflectance of water, soil and vegetation at different wavelengths; the wavelength areas used by the 
NDWI are highlighted in green (green bands) and red (NIR bands), modified after SEOS-PROJECT.EU, 2020. 
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Table 6: Thresholds to discriminate between river system and other values. 

NDWI image of the year Threshold 

1973 -0.26 

1980 -0.05 

1990 -0.25 

2000 -0.15 

2010 -0.18 

2019 -0.15 

 

The application of the thresholds results in maps that only show water-body and 

pointbar areas differentiated from other areas (see Fig. A8 as an example).   

Based on these threshold maps, an area is clipped interactively (due to computing 

limitations of QGIS regarding data quantity) that covers mainly the river system 

(including water bodies and pointbars) and adjacent areas. In the next step, all 

remaining pixels of the river system in the clipped images are assigned the value “1”, 

whereas the areas below the threshold (see Tab. 6) are assigned NA.   

The resulting image still includes many small objects that lie outside of the main 

riversystem (e.g. small ponds, agricultural canals). To eliminate these water bodies 

having no connection to the main river system, the raster data are vectorized and single 

isolated polygons are automatically eliminated, based on the assumption that the main 

river area shows in one connected polygon. 

The results of all processed years are overlain to visualize the different extents (Fig. 

A9-A14). The three results with the greatest differences in extent are selected 

interactively and then processed for the change detection map: years 1973, 2000 and 

2019 (Fig. A16). 

 

Change Detection Map 

The goal of the change detection map is to provide information on the changes of the 

Padma river system course and the direction of shifting. The changes are visualized in 

a single map. The conversion of the vector map (polygons) back to a raster map 

enables to present different river areas with characteristic values in a single map. 
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A unique year-dependent characteristic value is assigned to the cells of each new 

raster image (see Tab. 7). The raster cell size is set to 20 m, as this is the pixel size, 

needed by the successive project analyses. 

The yearly products are joined to receive the change detection map of the area of the 

Padma river system for the different years (see Tab. 8).  

 

Table 7: Overview of the characteristic values per year. 

 1973 2000 2019 

Characteristic 
value 

1 10 100 

 

Table 8: Legend of the raster values in the change detection map. 

Raster value Area of the Padma river system in 

1 1973 

10 2000 

11 1973, 2000 

100 2019 

101 1973, 2019 

110 1973, 2000 

111 1973, 2000, 2019 

  

Mapping active and passive river system areas 

In the Kushtia study area, the information of all results (1973, 1980, 1990, 2000, 2010, 

2019) are included into a map that presents active and passive areas of Padma river 

system.  

 

Active areas are defined as the area of the Padma river system in 2019.  

 

Passive areas are defined as the area of the Padma river system in all years 

before 2019 but not in 2019.  

 

The polygons of each year are rasterized. A unique year-dependent characteristic 

value is assigned to the cells of each new raster image (see Tab. 9). The raster cell 

size is set to 20 m, as this is the pixel size, needed by the successive project analyses. 
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The individual results are joined. The values of the map represent the area of the 

Padma river system in different years (see Tab. 10). To reduce the values to active or 

passive areas, the raster is reclassified into two classes (see Tab. 10). 

 Areas where the river is not classified in 2019, are defined as passive and are 

assigned with a value of “1”. Areas, which show the river system in 2019, are defined 

as active and are assigned with the value of “2”. 

 

Table 9: Overview of the characteristic values per year for the mapping of active/passive river system areas. 

 1973 1980 1990 2000 2010 2019 

Characteristic 
value 

1 10 100 1000 10000 100000 

 

Table 10: Legend of the raster cell values in the map of active/passive river system areas. 

Characteristic 

value 
Area of the Padma river system in 

Reclassified value 

(1=passive/2=active) 

1 1973 1 

10 1980 1 

11 1973, 1980 1 

100 1990 1 

101 1973, 1990 1 

110 1980, 1990 1 

111 1973, 1980, 1990 1 

1000 2000 1 

1001 1973, 2000 1 

1010 1980, 2000 1 

1011 1973, 1980, 2000 1 

1100 1990, 2000 1 

1101 1973, 1990, 2000 1 

1110 1980, 1990, 2000 1 

1111 1973, 1980, 1990, 2000 1 

10000 2010 1 

10001 1973, 2010 1 

10010 1980, 2010 1 

10011 1973, 1980, 2010 1 
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10100 1990, 2010 1 

10101 1973, 1990, 2010 1 

10110 1980, 1990, 2010 1 

10111 1973, 1980, 1990, 2010 1 

11000 2000, 2010 1 

11001 1973, 2000, 2010 1 

11010 1980, 2000, 2010 1 

11011 1973, 1980, 2000, 2010 1 

11100 1990, 2000, 2010 1 

11101 1973, 1990, 2000, 2010 1 

11110 1980, 1990, 2000, 2010 1 

11111 1973, 1980, 1990, 2000, 2010 1 

100000 2019 2 

100001 1973, 2019 2 

100010 1980, 2019 2 

100011 1973, 1980, 2019 2 

100100 1990, 2019 2 

100101 1973, 1990, 2019 2 

100110 1980, 1990, 2019 2 

100111 1973, 1980, 1990, 2019 2 

101000 2000, 2019 2 

101001 1973, 2000, 2019 2 

101010 1980, 2000, 2019 2 

101011 1973, 1980, 2000, 2019 2 

101100 1990, 2000, 2019 2 

101101 1973, 1990, 2000, 2019 2 

101110 1980, 1990, 2000, 2019 2 

101111 1973, 1980, 1990, 2000, 2019 2 

110000 2010, 2019 2 

110001 1973, 2010, 2019 2 

110010 1980, 2010, 2019 2 

110011 1973, 1980, 2010, 2019 2 

110100 1990, 2010, 2019 2 
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110101 1973, 1990, 2010, 2019 2 

110110 1980, 1990, 2010, 2019 2 

110111 1973, 1980, 1990, 2010, 2019 2 

111000 2000, 2010, 2019 2 

111001 1973, 2000, 2010, 2019 2 

111010 1980, 2000, 2010, 2019 2 

111011 1973, 1980, 2000, 2010, 2019 2 

111100 1990, 2000, 2010, 2019 2 

111101 1973, 1990, 2000, 2010, 2019 2 

111110 1980, 1990, 2000, 2010, 2019 2 

111111 1973, 1980, 1990, 2000, 2010, 2019 2 

 

Results and Discussion 

The resulting maps are added in Annexure A (A6-A17) and described in this section. 

For better orientation, topographical information and some in Bangladesh well-known 

cities are included in the final map visualization of the remote sensing based products.  

 

Extent of Padma river system and its water body 

As already mentioned, the NDWI values greater than the threshold lead to the 

classification of a larger area than just the water bodies as it includes water bodies and 

pointbars. All together is interpreted as full extent (maximum water coverage) of the 

Padma river system based on discussions with the GSB colleagues. As an example, 

Figure A10 shows the NDWI result for 2010 with a threshold greater than -0.18 overlain 

on the Landsat TM RGB 321 image from 2010. It is visible that the water body, 

pointbars, as well as some brownish vegetated areas – the floodplain – are included 

into the result.  

Fig. A9 to A14 show in blue the extents of the Padma river system (based on NDWI) 

in the years of 1973, 1980, 1990, 2000, 2010 and 2019.  

The different levels of details between the final maps are caused by the different spatial 

resolutions of the images. Due to the higher spatial resolution, Sentinel-2 shows more 

details than Landsat TM and Landsat MSS (Tab. 4).  

It can be summarized, that the general shape of river system for the different years is 

visible in all decades.  
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Change Detection Map 

Based on the NDWI evaluations, the change detection map is calculated (Fig. A16).  

This map includes information on the shifting direction of the river system, together 

with the locations of land-loss and possible land-gain. Furthermore, it shows which 

regions were part of the river system for the period between 1973 and 2019 (Fig. A16, 

dark blue).  

In several regions of the river areas, changes in time are observable (Fig. A16): 

Southeast of Bheramara, a progressing cut bank is clearly visible: 

Dark blue color shows the extension of the river system in the years of 1973, 2000 and 

2019, orange color the extension of the river system in the years of 2000 and 2019. 

The red color represents areas   of the river system in the year of 2019. The change 

detection map visualizes a relocation of the river system to the southeastern direction.  

A similar river relocation is visible west of Ishwardi: Light green color shows the position 

of the river system in 1973 and 2000, light orange in 2000. The darker orange and red 

color represent the position of the river system in 2000 and 2019, showing a shift of 

the river system to the northwest. Areas in light green, light blue and turquoise are not 

part of the river system since 2000; an increased vegetation and therefore possible 

anthropogenic use like agriculture support this interpretation. 

 

In contrast, northeast of Kumarkhali an area of light green, light blue and turquoise 

colors is visible. The change detection map indicates that this region was part of the 

river system from 1973 until 2000, but not in 2019. Therefore, these areas can be 

interpreted as a retreat of the river system to the north. A similar development is visible 

on the northern side of the Padma River between Rooppur and Pabna. The turquoise 

color indicates large areas where the river extended only in 1973, whereas the light 

green and light orange color in this region indicate a retreat of the river system in the 

southwest. 

In summary, the area between Bheramara and Pabna shows the shape of a meander 

bow. The retreat of the river system on the sedimentation side of the meander bow 

south of Rooppur corresponds with the evolving erosion bank southeast of Bheramara. 

In this region, the river developed from 1973 to 2019 into the southeastern direction.  

In other regions, only little changes over the period of 46 years are visible, especially 

on the southern riverbank northwest of Kumarkhali. 
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A possible explanation could be an anthropogenic embankment along the riverbank. 

A similar region is visible north of the Lalon-Shah-Bridge showing only very little 

changes.  

It is also noteworthy that from 1973 to 2019 the Garai River at Kushtia shifted towards 

the east.  

Overall, the Change Detection Map in Fig. A16 shows that the general river system is 

regionally stable, but changes a lot on a local scale.  

 

Active and passive river areas in Kushtia study area 

In the Kushtia study area, the change detection map shows active and passive areas 

(Fig. A17). The map allows locating areas of sedimentation processes (passive areas) 

and provides indications on other geo-related processes (e.g. liquefaction-prone 

areas). 

 

2.3 Inundation Map 
Due to climate change, Bangladesh is experiencing an increase in rural-urban 

migration movements. Therefore, the demand for safe building ground is very high. 

One result is an increasing lateral growth of urban areas. However, urban growth is 

limited to suitable building ground and eligible areas are often low-lying and therefore 

prone to flooding during the yearly monsoon season between May and October. 

Planning agencies may benefit from geodata on inundation-prone areas that are 

reliable, available frequently and sustainable, easy to process and easily 

understandable. 

The overall objective of this analysis is to receive a map that gives an overall 

impression on the frequency of inundation in areas that are at risk of flooding (Fig. A18) 

for the years 2015 to 2020. The analysis is carried out using 51 Sentinel-1 radar images 

from 2015 to 2020 and a threshold approach to differentiate between inundated and 

non-inundated areas. To ensure an easy processing of the large amount of multi-

temporal radar data, the analysis is carried out using the online processing tool Google 

Earth Engine (see the Google Earth Engine code in Annexure B).  

The Bangladesh Water Development Board (BWDB) already established inundation 

mapping using Sentinel-1 datasets. In their annual flood reports, the BWDB is using 

an inundation map to verify the output of a flood-forecasting model (BANGLADESH 

WATER DEVELOPMENT BOARD, 2018, pp. 92-93).  
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Data 

The analysis is based on Copernicus Sentinel-1 images starting 2015, with operation 

of the Sentinel 1 sensor. 

Google Earth Engine states to preprocess the images using the Sentinel-1 Toolbox to 

receive radiometrically calibrated images, terrain corrected and thermal noise removed 

(GOOGLE EARTH ENGINE DATA CATALOG, 2020). 

A data selection from the rainy season in Bangladesh is required to map the maximum 

inundation. The selected images are acquired in “IW” (interferometric wide swath), the 

default acquisition mode of Sentinel-1 (EUROPEAN SPACE AGENCY, 2020). To 

differentiate between water and non-water pixels, the VH polarization (vertical transmit 

of the signal and horizontal receive of the signal) is selected. Preliminary works in the 

study areas have shown that VH is the most suitable polarization for the detection of 

water. The respective spatial resolution of the VH polarization images is 10 meter. 

The Bangladesh rainy season is roughly between May and October of each year. 

Based on the experience and knowledge of colleagues of the Geological Survey of 

Bangladesh (GSB), the time of maximum inundation for the study area of Kushtia is 

set to the months of June and July of each year. Since the exact dates of maximum 

inundation of a year are unknown, all available images of June and July of each year 

are processed in this analysis.  

Finally, using the above-mentioned benchmarks, 51 Sentinel-1 images of descending 

orbits are selected for the processing (Annexure B, lines 8-23). Annexure C: Data lists 

the images in a table. 

 

Method 

The workflow of the processing in Google Earth Engine is visualized in Fig. 7. The 

selected images of each year are combined and mean values are calculated. The 

mean-value images are subsetted to fit the extent of the study area (see Fig. A19; 

Annexure B, lines 24-29).  

 

Thresholding 

Water surfaces appear in black and dark gray colors in the averaged amplitude images 

(see Fig. A19). In order to identify a threshold value, the values of assumed water and 

non-water image areas are identified interactively.  
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Based on experience in the definition of thresholds discriminating between water and 

non-water surfaces, the identified threshold values in Bangladesh range from -20 dB 

to -22 dB. For the Kushtia study area, a threshold value including values smaller than 

-21 dB is chosen and applied to images from all years (Annexure B, lines 109-118). 

The output image only shows pixels smaller than the threshold, representing the 

inundated areas of each year (see Fig. A20 for the inundated areas of 2020).  

 

All areas that have been flooded between 2015 and 2020, are compiled by combining 

the threshold images of all years into one image (see Fig. A18; Annexure B, lines 121-

123). The result is exported with a 20m spatial resolution, which is a requirement for 

further analyses in the project (Annexure B, lines 129-141). 
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Figure 7: Workflow of the Google Earth Engine processing of the inundation mapping method. 
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Results and Discussion 

The resulting map presents the areas and frequencies of inundation between 2015 and 

2020 (see Fig. A18). The map exhibits three major inundation areas: Areas near the 

river, ponds and stagnant water bodies and inundated agricultural fields. 

The areas near the river are located in close proximity to the Garai River that is 

bordering the northern part of the study area of Kushtia. Between the Jagia Uttarpara 

landmark and the Garai River, an area is located that is inundated almost every year 

during the six-year period investigated, whereas the areas facing the landmark are 

inundated less regularly. The high frequency of inundation from 2015 to 2020 implies 

to consider this area as part of the Padma river system during the rainy season (see 

chapter 2.2 River Shifting Change Detection for similar results). 

Many small areas in the Kushtia city area are inundated yearly, representing ponts and 

lakes as they partially overlap with the water bodies in the topographic base map (data 

of the Survey of Bangladesh and OpenStreetMap). 

The rural areas in the western part of the investigated area are clearly separable from 

the city (see Fig. A19) but, according to Fig. A18, only once or twice inundated during 

the six-year period.  

However, there is a possibility that the areas west of the city of Kushtia have annual 

inundation at different locations instead of one frequently inundated large location. 

It can be concluded that between 2015 and 2020 for the months June and July (rainy 

season) only areas near the river Garai are inundated. The inland-lying areas do not 

experience a high frequency of yearly area-wide flooding. 
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Annexure A: Maps 
 

Figure A1: Sentinel-2 Dataset of the Kushtia Region, 22.09.2019 (RGB 4-3-2). 



ii 
 

 
Figure A2: Land use in September 2019 in Kushtia region based on Sentinel-2 data. 
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Figure A3: Land use in September 2019 in Kushtia project area based on Sentinel-2. 
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Figure A4: Status of Urban Development in Sep. 2019 in Kushtia project area. 
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Figure A5: Masked Sentinel-2 Dataset of the Kushtia Region, September 2019 (RGB 4-3-2). 
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Figure A6: Overview of the region around Kushtia (Landsat TM, RGB 321, 06.02.2010). 
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Figure A7: Normalized Difference Water Index (NDWI), based on Sentinel-2 imagery (24.02.2019). 
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Figure A8: Normalized Difference Water Index (NDWI), based on Sentinel-2 imagery (24.02.2019), Threshold of -0.15.  
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Figure A9: Location of the Padma River System based on NDWI from 1973. 
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Figure A10: Location of the Padma River System based on NDWI from 1980. 
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Figure A11: Location of the Padma River System based on NDWI from 1990. 
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Figure A12: Location of the Padma River System based on NDWI from 2000. 
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Figure A13: Location of the Padma River System based on NDWI from 2010. 
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Figure A14: Location of the Padma River System based on NDWI from 2019. 
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Figure A15: Location of the Padma River System based on NDWI from 2010. 
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Figure A16: Change Detection of Padma River System of February 1973, 2000 and 2019. 
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Figure A17: Active and Passive Areas of the Padma River System in Kushtia, based on Satellite Data of 1973, 1980, 1990, 2000, 2010 and 2019.
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Figure A18: Inundation in June/July 2015-2020 in Kushita study area. 
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Figure A19: Mean Sentinel-1 image of June/July 2020 in Kushtia study area. 
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Figure A20: Inundation in June/July 2020 in Kushita study area. 
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Annexure B: Google Earth Engine Code 
 

// Select Area of Interest (KSpa = uploaded SHP of Kushtia study area) 1 

KSpa = KSpa.geometry(); 2 

// Center the map with focus on the study area 3 

Map.centerObject(KSpa); 4 

 5 

 6 

// 2015 7 

// Define start and end date of the study period 8 

var start_wet = '2015-06-01'; 9 

var end_wet = '2015-07-30'; 10 

 11 

// Load the Sentinel-1 image collection 12 

var S1_wet15 = ee.ImageCollection('COPERNICUS/S1_GRD') 13 

// Filter: Return only Vertical-Horizontal (VH) polarization images 14 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 15 

// Filter: Return only images with the main acquisition mode IW 16 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 17 

// Filter: Return only descending orbit images 18 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 19 

// Filter: Return only images with a 10 m resolution 20 

.filterMetadata('resolution_meters','equals',10) 21 

// Filter: Return only images within the study period 22 

.filterDate(start_wet, end_wet) 23 

// Filter: Return only images within the study area 24 

.filterBounds(KSpa) 25 

// Calculate the mean of all remaining images 26 

.reduce(ee.Reducer.mean()) 27 

// Clip the mean-image to the study area 28 

.clip(KSpa); 29 

// Print the image information to the console 30 

print(S1_wet15) 31 

 32 

 33 

// 2016 34 

var start_wet = '2016-06-01'; 35 

var end_wet = '2016-07-30'; 36 

 37 

var S1_wet16 = ee.ImageCollection('COPERNICUS/S1_GRD') 38 
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.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 39 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 40 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 41 

.filterMetadata('resolution_meters','equals',10) 42 

.filterDate(start_wet, end_wet) 43 

.filterBounds(KSpa) 44 

.reduce(ee.Reducer.mean()) 45 

.clip(KSpa); 46 

print(S1_wet16) 47 

 48 

// 2017 49 

var start_wet = '2017-06-01'; 50 

var end_wet = '2017-07-30'; 51 

 52 

var S1_wet17 = ee.ImageCollection('COPERNICUS/S1_GRD') 53 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 54 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 55 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 56 

.filterMetadata('resolution_meters','equals',10) 57 

.filterDate(start_wet, end_wet) 58 

.filterBounds(KSpa) 59 

.reduce(ee.Reducer.mean()) 60 

.clip(KSpa); 61 

print(S1_wet17) 62 

 63 

//2018 64 

var start_wet = '2018-06-01'; 65 

var end_wet = '2018-07-30'; 66 

 67 

var S1_wet18 = ee.ImageCollection('COPERNICUS/S1_GRD') 68 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 69 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 70 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 71 

.filterMetadata('resolution_meters','equals',10) 72 

.filterDate(start_wet, end_wet) 73 

.filterBounds(KSpa) 74 

.reduce(ee.Reducer.mean()) 75 

.clip(KSpa); 76 

print(S1_wet18) 77 

 78 

//2019 79 

var start_wet = '2019-06-01'; 80 
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var end_wet = '2019-07-30'; 81 

 82 

var S1_wet19 = ee.ImageCollection('COPERNICUS/S1_GRD') 83 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 84 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 85 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 86 

.filterMetadata('resolution_meters','equals',10) 87 

.filterDate(start_wet, end_wet) 88 

.filterBounds(KSpa) 89 

.reduce(ee.Reducer.mean()) 90 

.clip(KSpa); 91 

print(S1_wet19) 92 

 93 

//2020 94 

var start_wet = '2020-06-01'; 95 

var end_wet = '2020-07-30'; 96 

 97 

var S1_wet20 = ee.ImageCollection('COPERNICUS/S1_GRD') 98 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 99 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 100 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 101 

.filterMetadata('resolution_meters','equals',10) 102 

.filterDate(start_wet, end_wet) 103 

.filterBounds(KSpa) 104 

.reduce(ee.Reducer.mean()) 105 

.clip(KSpa); 106 

print(S1_wet20) 107 

 108 

// Set threshold to distinguish between water and non-water 109 

var threshold = -21 110 

 111 

// Filter every image collection to the defined threshold 112 

var S1_wet_threshold15 = S1_wet15.select('VH_mean').lt(threshold); 113 

var S1_wet_threshold16 = S1_wet16.select('VH_mean').lt(threshold); 114 

var S1_wet_threshold17 = S1_wet17.select('VH_mean').lt(threshold); 115 

var S1_wet_threshold18 = S1_wet18.select('VH_mean').lt(threshold); 116 

var S1_wet_threshold19 = S1_wet19.select('VH_mean').lt(threshold); 117 

var S1_wet_threshold20 = S1_wet20.select('VH_mean').lt(threshold); 118 

 119 

// Combining all images to get one image with six classes 120 
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var final_img = 121 

S1_wet_threshold15.add(S1_wet_threshold16).add(S1_wet_threshold17).add(S1_w122 

et_threshold18).add(S1_wet_threshold19).add(S1_wet_threshold20); 123 

 124 

// Visualize the final result 125 

Map.addLayer(final.updateMask(final_img),{palette:"0000FF"},'Water 126 

extent’,1); 127 

 128 

// Export the image to the Drive 129 

Export.image.toDrive({ 130 

// Definition of the image 131 

  image: final_img, 132 

// Description 133 

  description: 'KS_Inundation_Map', 134 

// Resolution in meter 135 

  scale: 20, 136 

// Study area 137 

  region: KSpa, 138 

// Format of the raster 139 

  fileFormat: 'GeoTIFF' 140 

}); 141 
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Annexure C: Data 
 

Optical satellite images 

 

Landsat naming convention 

Image name (Level-1): LXSS_LLLL_PPPRRR_YYYYMMDD_yyyymmdd_CC_TX 

Image name (Level-2): LXSSPPPRRRYYYYMMDDCCTX 

Group Meaning 

LXSS L: Landsat 
X: Sensor 

“M” (MSS), “T” (TM) 

SS: Satellite 
“01” (Landsat 1), “03” (Landsat 3), “05” 

(Landsat 5) 

LLLL Processing correction level: “L1TP”, “L1GT”, “L1GS” 

PPPRRR PPP: WRS path RRR: WRS row 

YYYYMMDD Acquisition year, month, day 

yyyymmdd Processing year, month, day 

CC Collection number: “01”, “02”, … 

TX 
Collection category: 
“RT” (Real-Time), “T1” (Tier 1), “T2” (Tier 2) 

Source: usgs.gov/faqs/how-can-i-tell-difference-between-landsat-collections-data-and-landsat-data-i-have-downloaded 

(Accessed on 20-07-2020). 
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Data (Landsat MSS, Level-1) 

Year Image name Product 

1973 LM01_L1TP_148043_19730221_20180427_01_T2 River Shifting Change Detection Analysis 

1980 LM03_L1TP_148043_19800221_20180416_01_T2 River Shifting Change Detection Analysis 

 

Data (Landsat TM, Level-2) 

Year Image name Product 

1990 LT051380431990013001T1 River Shifting Change Detection Analysis 

2000 LT051380432000021101T1 River Shifting Change Detection Analysis 

2010 LT051380432010020601T1 River Shifting Change Detection Analysis 

 

Sentinel-2 naming convention 

Image name: MMM_MSIXXX_YYYYMMDDHHMMSS_Nxxyy_ROOO_Txxxxx_<Product Discriminator> 

Group Meaning 

MMM Mission ID: “S2A”, “S2B” 

MSIXXX Product level: “Level-1C”, “Level-2A” 

YYYYMMDDTHHMMSS Sensing start time, date and time separated by character “T”  

Nxxyy PDGS processing baseline number 

ROOO Relative orbit number 

Txxxxx Tile number 

Source: sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/naming-convention (Accessed on 20-07-2020). 
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Data 

Year Image name Product 

2019 

S2A_MSIL1C_20190224T043751_N0207_R033_T45QYG_20190224T081535 River Shifting Change 

Detection Analysis 

S2A_MSIL1C_20190224T043751_N0207_R033_T45QXG_20190224T081535 River Shifting Change 

Detection Analysis 

S2A_MSIL2A_20190922T043701_N0213_R033_T45QYG_20190922T084016 Land-Use Classification 

 

 

RADAR satellite images 

 

Sentinel-1 naming convention 

Image name: MMM_BB_TTTR_LFPP_YYYYMMDDTHHMMSS_ YYYYMMDDTHHMMSS_OOOOOO_DDDDDD_CCCC 

Group Meaning 

MMM Mission Identifier: “S1A”, S1B” 

BB Mode/Beam: “S1/S2/S3/S4/S5/S6”, “IW/EW/WV” 

TTTR TTT: Product Type 

“RAW”, “SLC”, “GRD”, “OCN” 

R: Resolution Class 

“F” (Full), “H” (High), “M” (Medium) 

LFPP L: Processing Level 

“0”, “1”, “2” 

F: Product Class 

“S” (Standard), “A” (Annotation) 

PP: Polarization 

“SH” (single HH) 

“SV” (single VV) 

“DH” (dual HH+HV) 
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“DV” (dual VV+VH) 

YYYYMMDDTHHMMSS Product start time, separated by the character “T” 

YYYYMMDDTHHMMSS Product end time, separated by the character “T” 

OOOOOO Absolute orbit number at product start time 

DDDDDD Mission data-take identifier 

CCCC Product unique identifier 

Source: sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/naming-conventions (Accessed on 20-07-2020). 

 

Data 

Year Image Name 

2015 

S1A_IW_GRDH_1SDV_20150612T235524_20150612T235549_006347_0085AA_C142 

S1A_IW_GRDH_1SDV_20150630T000327_20150630T000352_006595_008CA0_2C75 

S1A_IW_GRDH_1SDV_20150706T235524_20150706T235549_006697_008F55_E0E4 

S1A_IW_GRDH_1SDV_20150724T000327_20150724T000352_006945_009672_27AA 

2016 

S1A_IW_GRDH_1SDV_20160606T235527_20160606T235552_011597_011B95_1F08 

S1A_IW_GRDH_1SDV_20160630T235528_20160630T235553_011947_0126A4_AB04 

S1A_IW_GRDH_1SDV_20160718T000336_20160718T000401_012195_012EC8_FCF2 

S1A_IW_GRDH_1SDV_20160724T235529_20160724T235554_012297_013213_0790 

2017 

S1A_IW_GRDH_1SDV_20170601T235528_20170601T235553_016847_01C031_F847 

S1A_IW_GRDH_1SDV_20170607T000336_20170607T000401_016920_01C27F_10E4 

S1A_IW_GRDH_1SDV_20170607T000401_20170607T000426_016920_01C27F_83A0 
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S1A_IW_GRDH_1SDV_20170619T000337_20170619T000402_017095_01C7E1_9AF9 

S1A_IW_GRDH_1SDV_20170619T000402_20170619T000427_017095_01C7E1_9B0D 

S1A_IW_GRDH_1SDV_20170701T000337_20170701T000402_017270_01CD28_970D 

S1A_IW_GRDH_1SDV_20170701T000402_20170701T000427_017270_01CD28_C453 

S1A_IW_GRDH_1SDV_20170725T000339_20170725T000404_017620_01D7C9_F531 

S1A_IW_GRDH_1SDV_20170725T000404_20170725T000429_017620_01D7C9_DCFD 

2018 

S1A_IW_GRDH_1SDV_20180608T235535_20180608T235600_022272_026907_035D 

S1A_IW_GRDH_1SDV_20180614T000343_20180614T000408_022345_026B4E_8A5D 

S1A_IW_GRDH_1SDV_20180614T000408_20180614T000433_022345_026B4E_51E8 

S1A_IW_GRDH_1SDV_20180626T000343_20180626T000408_022520_027072_2425 

S1A_IW_GRDH_1SDV_20180626T000408_20180626T000433_022520_027072_6AE7 

S1A_IW_GRDH_1SDV_20180708T000344_20180708T000409_022695_02758B_A657 

S1A_IW_GRDH_1SDV_20180708T000409_20180708T000434_022695_02758B_A5FE 

S1A_IW_GRDH_1SDV_20180714T235537_20180714T235602_022797_0278AA_2752 

S1A_IW_GRDH_1SDV_20180720T000345_20180720T000410_022870_027AE8_BE68 

S1A_IW_GRDH_1SDV_20180720T000410_20180720T000435_022870_027AE8_BC82 

S1A_IW_GRDH_1SDV_20180726T235538_20180726T235603_022972_027E33_C265 

2019 

S1A_IW_GRDH_1SDV_20190603T235541_20190603T235606_027522_031B0C_A98E 

S1A_IW_GRDH_1SDV_20190615T235541_20190615T235606_027697_032055_BC0D 

S1A_IW_GRDH_1SDV_20190627T235542_20190627T235607_027872_03258C_31FD 

S1A_IW_GRDH_1SDV_20190709T235543_20190709T235608_028047_032AE1_1F4E 



xxx 
 

S1A_IW_GRDH_1SDV_20190721T235544_20190721T235609_028222_033027_264C 

S1A_IW_GRDH_1SDV_20190727T000351_20190727T000416_028295_033259_7B24 

S1A_IW_GRDH_1SDV_20190727T000416_20190727T000441_028295_033259_7B89 

2020 

S1A_IW_GRDH_1SDV_20200603T000355_20200603T000420_032845_03CDEB_5865 

S1A_IW_GRDH_1SDV_20200603T000420_20200603T000445_032845_03CDEB_D620 

S1A_IW_GRDH_1SDV_20200609T235548_20200609T235613_032947_03D0F8_ABCE 

S1A_IW_GRDH_1SDV_20200615T000355_20200615T000420_033020_03D320_436E 

S1A_IW_GRDH_1SDV_20200615T000420_20200615T000445_033020_03D320_F045 

S1A_IW_GRDH_1SDV_20200621T235549_20200621T235614_033122_03D646_CC28 

S1A_IW_GRDH_1SDV_20200627T000356_20200627T000421_033195_03D870_5BC2 

S1A_IW_GRDH_1SDV_20200627T000421_20200627T000446_033195_03D870_EF60 

S1A_IW_GRDH_1SDV_20200703T235549_20200703T235614_033297_03DB97_B775 

S1A_IW_GRDH_1SDV_20200709T000357_20200709T000422_033370_03DDC1_FABB 

S1A_IW_GRDH_1SDV_20200709T000422_20200709T000447_033370_03DDC1_BB58 

S1A_IW_GRDH_1SDV_20200715T235550_20200715T235615_033472_03E0EC_41A1 

S1A_IW_GRDH_1SDV_20200721T000358_20200721T000423_033545_03E31B_1D39 

S1A_IW_GRDH_1SDV_20200721T000423_20200721T000448_033545_03E31B_29E3 

S1A_IW_GRDH_1SDV_20200727T235551_20200727T235616_033647_03E64C_0433 

S1B_IW_GRDH_1SDV_20200721T235523_20200721T235548_022576_02AD94_45A2 

 


